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We study the distribution of optimal path lengths in random graphs with random weights associated with
each link �“disorder”�. With each link i we associate a weight �i=exp�ari�, where ri is a random number taken
from a uniform distribution between 0 and 1, and the parameter a controls the strength of the disorder. We
suggest, in an analogy with the average length of the optimal path, that the distribution of optimal path lengths
has a universal form that is controlled by the expression �1/ pc���� /a�, where �� is the optimal path length in
strong disorder �a→�� and pc is the percolation threshold. This relation is supported by numerical simulations
for Erdős-Rényi and scale-free graphs. We explain this phenomenon by showing explicitly the transition
between strong disorder and weak disorder at different length scales in a single network.
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I. INTRODUCTION

Many real world systems exhibit a weblike structure and
may be treated as “networks.” Examples may be found in
physics, sociology, biology, and engineering �1–3�. The func-
tion of most real world networks is to connect distant nodes,
either by transfer of information �e.g., the Internet�, or
through transportation of people and goods �such as net-
works of roads and airlines�. In many cases there is a “cost”
or a “weight” associated with each link, and the larger the
weight on a link, the harder it is to traverse this link. In this
case, the network is called disordered or weighted �4,5�. For
example, in the Internet, each link between two routers has a
bandwidth or delay time; in a transportation network, some
roads may have only one lane while others may be highways
allowing for large volumes of traffic.

The average length of the optimal path �or “shortest
path”� in weighted lattices and networks has been exten-
sively studied �4,6–9�. In weighted networks it is commonly
assumed that each link is associated with a weight �i
=exp�ari�, where ri is a random number taken from a uni-
form distribution between 0 and 1, and the parameter a con-
trols the strength of the disorder. It has been shown �9� that
the length of the optimal path in such weighted networks
scales as l�a��N�opt �where �opt is universal exponent� for
small system size N, and l�a�� ln N for large systems �10�.
More precisely,

��a� � ��F� ��

apc
� , �1�

where pc is the percolation threshold and ���N�opt is the
optimal path length for strong disorder �a→��. For Erdős-
Rényi �ER� graphs, �opt=1/3. For scale-free �SF� networks,

with a power-law degree distribution P�k��k−�, �opt= ��
−3� / ��−1� for 3���4 and �opt=1/3 for ��4 �4�. The
function F�u� is of the form

F�u� = �const if u � 1

ln�u�/u if u � 1.
	 �2�

In this paper we study the following question: How are
the different optimal paths in a network distributed? The dis-
tribution of the optimal path lengths is especially important
in communication networks, in which the overall network
performance depends on the different path lengths between
all nodes of the network, and not only the average. A recent
work has studied the distribution form of the shortest path
lengths on minimum spanning trees �11�, which correspond
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TABLE I. Different disordered ER graphs with same value of
Z= �1/ pc���� /a�. The symbols refer to Fig. 1.

N 
k� �� pc a Z=
1

pc

��

a
Symbol

4000 3 42.48 1/3 12.73 10 	

8000 3 60.59 1/3 18.16 10 �

4000 5 44.01 1/5 22.00 10 �

8000 5 58.42 1/5 29.19 10 *

4000 8 45.99 1/8 36.78 10 �

8000 8 58.25 1/8 46.60 10 �

4000 3 42.48 1/3 42.45 3 	

8000 3 60.59 1/3 60.55 3 �

4000 5 44.01 1/5 73.33 3 �

8000 5 58.42 1/5 97.31 3 *

2000 8 34.94 1/8 93.15 3 �

4000 8 45.99 1/8 122.62 3 �
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to optimal paths on networks with large variations in link
weights �a→��.

We generalize these results and suggest that the distribu-
tion of the optimal path lengths has the following scaling
form:

P��,N,a� �
1

��

G� �

��

,
1

pc

��

a
� . �3�

The parameter Z��1/ pc���� /a� determines the functional
form of the distribution. Relation �3� is supported by simu-
lations for both ER and SF graphs, including SF graphs with
2���3, for which pc→0 with system size N �12� �Sec. II�.

The paper is organized as follows: in Sec. II we show
results from simulations for various ER and SF graphs. In

Sec. III we explain these results and also show that the op-
timal path lopt�a� inside a single network scales differently
below and above a characteristic length 
=apc. For ��
 it is
like strong disorder, while for ��
 the behavior is like weak
disorder.

II. ERDŐS-RÉNYI AND SCALE-FREE GRAPHS

We simulate ER graphs with weights on the links for dif-
ferent values of graph size N, control parameter a, and aver-
age degree 
k� �which determines pc=1/ 
k�; see Table I�. We
then generate the shortest path tree �SPT� using Dijkstra’s
algorithm �13� from some randomly chosen root node. Next,
we calculate the probability distribution function of the
shortest �i.e., optimal� path lengths for all nodes in the graph.

TABLE II. Different disordered SF graphs with same value of Z= �1/ pc���� /a�. The percolation threshold
was calculated according to: pc= 
k� / 
k�k−1��. The symbols refer to Fig. 2.

N � m �� pc a Z=
1

pc

��

a
Symbol

4000 3.5 2 29.02 0.27 10.51 10 	

8000 3.5 2 34.13 0.26 12.88 10 �

4000 5 2 57.70 0.5 11.54 10 �

8000 5 2 72.03 0.5 14.40 10 *

4000 3.5 2 29.02 0.27 52.56 2 	

8000 3.5 2 34.13 0.26 64.44 2 �

4000 5 2 57.70 0.5 57.70 2 �

8000 5 2 72.03 0.5 72.03 2 *

FIG. 1. �Color online� Optimal path lengths distribution, P�l�,
for ER networks with �a�, �b� Z��1/ pc���� /a�=10 and �c�, �d� Z
=3. �a� and �c� represent the unscaled distributions for Z=10 and
Z=3, respectively, while �b� and �d� are the scaled distribution.
Different symbols represent networks with different characteristics
such as size N �which determines ���N1/3�, average degree 
k�
�which determines pc=1/ 
k��, and disorder strength a �see Table I
for details�. Results were averaged over 1500 realizations.

FIG. 2. �Color online� Optimal path lengths distribution, P�l�,
for SF networks with �a�, �b� Z��1/ pc���� /a�=10 and �c�, �d� Z
=2. �a� and �c� represent the unscaled distributions for Z=10 and
Z=2, respectively, while �b� and �d� are the scaled distribution.
Different symbols represent networks with different characteristics
such as size N �which determines ���N�opt�, � and m �which de-
termine pc�, and disorder strength a �see Table II�. Results were
averaged over 250 realizations.
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In Fig. 1 we plot ��P�� ,N ,a� vs � /�� for different values
of N ,a, and 
k�. A collapse of the curves is seen for all
graphs with the same value of Z= �1/ pc���� /a�.

Figure 2 shows similar plots for SF graphs—with a de-
gree distribution of the form P�k��k−� and with a minimal
degree m �14,15�. A collapse is obtained for different values
of N ,a ,�, and m, with ��3 �see Table II�.

Next, we study SF networks with 2���3. In this regime
the second moment of the degree distribution 
k2� diverges,
leading to several anomalous properties �12,16,17�. For ex-
ample, the percolation threshold approaches zero with sys-
tem size: pc�N−�3−��/��−1�→0, and the optimal path length
�� was found numerically to scale logarithmically �rather
than polynomially� with N �4�. Nevertheless, as can be seen
from Fig. 3 and Table III, the optimal paths probability dis-
tribution for SF networks with 2���3 exhibits the same
collapse for different values of N and a �although its func-
tional form is different from that ��3�.

III. DISCUSSION

We present evidence that the optimal path is related to
percolation �9�. Our present numerical results suggest that
for a finite disorder parameter a, the optimal path �on aver-
age� follows the percolation cluster in the network �i.e., links
with weight below pc� up to a typical “characteristic length”

=apc, before deviating and making a “shortcut” �i.e., cross-
ing a link with weight above pc�. For length scales below 

the optimal path behaves as in strong disorder and its length
is relatively long. The shortcuts have an effect of shortening

the optimal path length from a polynomial to logarithmic
form according to the universal function F�u� �Eq. �2��.
Thus, the optimal path for finite a can be viewed as consist-
ing of “blobs” of size 
 in which strong disorder persists.
These blobs are interconnected by shortcuts, which result in
the total path being in weak disorder.

We next present direct simulations supporting this argu-
ment. We calculate the optimal path length l�a� inside a
single network, for a given a, and find �Fig. 4� that it scales
differently below and above the characteristic length 
=apc.
For each node in the graph we find lmin, which is the number
of links �“hop counts”� along the shortest path from the root
to this node without regarding the weight of the link �18�. In
Fig. 4 we plot the length of the optimal path l�a�, averaged
over all nodes with the same value of lmin for different values
of a. The figure strongly suggests that l�a��exp�lmin� for
length scales below the characteristic length 
=apc, while
for large length scales l�a�� lmin �19�. This is consistent with
our hypothesis that below the characteristic length �
=apc�
lmin� ln N and l�a��N1/3, while lmin� ln N and l�a�� ln N
above.

In order to better understand why the distributions of lopt
depend on Z according to Eq. �3�, we suggest the following
argument. The optimal path for a→�, was shown to be pro-
portional to N1/3 for ER graphs and N��−3�/��−1� for SF graphs
with 3���4 �4�. For finite a the number of shortcuts, or

FIG. 3. �Color online� Optimal path lengths distribution function
for SF graphs with �=2.5, and with Z��1/ pc���� /a�=10. �a� rep-
resents the unscaled distribution for Z=10, while �b� shows the
scaled distribution. Different symbols represent graphs with differ-
ent characteristics such as size N �which determines ��� ln�N� and
pc�N−1/3�, and disorder strength a �see Table III�. Results were
averaged over 1500 realizations.

TABLE III. Different disordered SF graphs with �=2.5 and with same value of Z= �1/ pc���� /a�. Notice
that pc�N−1/3→0 for N→�. The symbols refer to Fig. 3.

N � m �� pc a Z=
1

pc

��

a
Symbol

2000 2.5 2 13.19 0.048 27.01 10 	

4000 2.5 2 14.66 0.037 38.70 10 �

8000 2.5 2 16.14 0.029 54.50 10 �

16000 2.5 2 17.69 0.022 77.48 10 *

FIG. 4. �Color online� Transition between different scaling re-
gimes for the optimal path length l�a� inside an ER graph with N
=128 000 nodes and 
k�=10. �a� shows the unscaled and �b� shows
the scaled length of the optimal path l�a� averaged over all nodes
with same value of lmin. Different symbols represent different values
of the disorder strength a. �b� shows that for length scales ��a�
smaller than the “characteristic length,” 
=apc, l�a� grows expo-
nentially relative to the shortest hop count path lmin �see the solid
line�. This is consistent with l�a��N1/3 and lmin� ln N inside the
range of size 
=apc. For length scales above 
, both quantities scale
as ln N.
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number of blobs, is Z=�� /
=�� /apc. The deviation of the
optimal path length for finite a from the case of a→� is a
function of the number of shortcuts. These results explain
why the parameter Z��� /apc determines the functional
form of the distribution function of the optimal paths.

IV. SUMMARY AND CONCLUSIONS

To summarize, we have shown that the optimal path
length distribution in weighted random graphs has a univer-
sal scaling form according to Eq. �3�. We explain this behav-
ior and demonstrate the transition between polynomial to
logarithmic behavior of the average optimal path in a single
graph. Our results are consistent with results found for finite
dimensional systems �25–28�: In a finite dimension, the pa-

rameter controlling the transition is L1/� /apc, where L is the
system length and � is the correlation length critical expo-
nent �for random graphs �=1 when calculated in the shortest
path metric�. This is because only the “red bonds”—bonds
that, if cut, would disconnect the percolation cluster �29�—
control the transition.
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